Genome-wide loss of heterozygosity and uniparental disomy in BRCA1/2-associated ovarian carcinomas.

نویسندگان

  • Christine S Walsh
  • Seishi Ogawa
  • Daniel R Scoles
  • Carl W Miller
  • Norihiko Kawamata
  • Steven A Narod
  • H Phillip Koeffler
  • Beth Y Karlan
چکیده

PURPOSE The importance of the BRCA gene products in maintaining genomic stability led us to hypothesize that BRCA-associated and sporadic ovarian cancers would have distinctive genetic profiles despite similarities in histologic appearance. EXPERIMENTAL DESIGN A whole-genome copy number analysis of fresh, frozen, papillary serous ovarian cancer DNA was done using the Affymetrix 50K Xba Mapping Array using each patient's normal genomic DNA as the matched control. Loss of heterozygosity and copy number abnormalities were summarized to define regions of amplification, deletion, or uniparental disomy (UPD), defined as loss of one allele and duplication of the remaining allele. Genomic abnormalities were compared between BRCA-associated and sporadic tumors. RESULTS We compared 6 BRCA-associated with 14 sporadic papillary serous ovarian carcinomas. Genetic instability, measured by percentage of genome altered, was more pronounced in BRCA-associated tumors (median, 86.6%; range, 54-100%) than sporadic tumors (median, 43.6%; range, 2-83%; P = 0.009). We used frequency plots to show the proportion of cases affected by each type abnormality at each genomic region. BRCA-associated tumors showed genome-wide loss of heterozygosity primarily due to the occurrence of UPD rather than deletion. UPD was found in 100% of the BRCA-associated and 50% of the sporadic tumors profiled. CONCLUSIONS This study reports on a previously underappreciated genetic phenomenon of UPD, which occurs frequently in ovarian cancer DNA. We observed distinct genetic patterns between BRCA-associated and sporadic ovarian cancers, suggesting that these papillary serous tumors arise from different molecular pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-wide analysis of copy number changes and loss of heterozygosity in myelodysplastic syndrome with del(5q) using high-density single nucleotide polymorphism arrays.

BACKGROUND We undertook a genome wide single nucleotide polymorphism analysis of a spectrum of patients with myelodysplastic syndrome del(5q) in order to investigate whether additional genomic abnormalities occur. Single nucleotide polymorphism array analysis has been shown to detect not only gene deletions but also regions of uniparental disomy that can pinpoint particular regions for mutation...

متن کامل

Pathogenesis and consequences of uniparental disomy in cancer.

The systematic application of new genome-wide single nucleotide polymorphism arrays has demonstrated that somatically acquired regions of loss of heterozygosity without changes in copy number frequently occur in many types of cancer. Until recently, the ubiquity of this type of chromosomal defect had gone unrecognized because it cannot be detected by routine cytogenetic technologies. Random and...

متن کامل

Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event.

Basal cell carcinoma is the most common human cancer with increasing incidence reported worldwide. Despite the aberrant signaling role of the Hedgehog pathway, little is known about the genetic mechanisms underlying basal cell carcinomas. Towards a better understanding of global genetic events, we have employed the Affymetrix Mapping 10K single nucleotide polymorphism (SNP) microarray technique...

متن کامل

aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations

MOTIVATION Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of gen...

متن کامل

Correction: Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions

Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 14 23  شماره 

صفحات  -

تاریخ انتشار 2008